Picturing Programs
An introduction to computer programming

Stephen Bloch!

"Math/CS Department, Adelphi University. Supported in part by NSF grant 0618543. Any
opinions, findings and conclusions or recommendations expressed in this material are those of
the author and do not necessarily reflect the views of the National Science Foundation (NSF).

Dedicated to my wife Deborah, with whom I would have done more fun things in the
past year if I hadn’t been busy writing a book.

vi

Contents

0 Introduction 1
0.1 Languages and dialects L oo 1
0.2 Problems, programs, and program testing 2
0.3 Using DrRacket Lo 3

0.3.1 Getting DrRacket 3
0.3.2 Starting DrRacket oL 3
0.3.3 Choosing languages e 4
0.3.4 Installing libraries0 L. 4
0.3.5 Gettinghelp Lo 5
0.4 Textbook website 5

PART I Running and writing programs 7

1 Drawing pictures 9
1.1 Working with pictures o oo 9

1.1.1 Importing pictures into DrRacket 9
1.1.2 The Interactions and Definitions panes 9
1.1.3 Choosing libraries o 10
1.2 Manipulating pictures L L 10
1.2.1 Terminology L 11
1.2.2 Combining pictures. 11
1.2.3 A Syntax Rule, Sorta oo 12
1.3 Making mistakes o 13
1.3.1 Leaving out the beginning left-parenthesis 13
1.3.2 Leaving out the ending right-parenthesis 14
1.3.3 Misspelling the operation name 15
1.3.4 Too few or too many arguments 15
1.3.5 Putting the operation and arguments in the wrong order 15
1.3.6 Doing something different from what you meant 16
1.4 Getting Help 0o o 16
1.5 More complex manipulations L. 16
1.6 Saving Your Work: the Definitions pane 18
1.7 The Stepper o e 19
1.8 Syntax and box diagrams oL o 20
1.9 Review o e 23
1.10 Reference 24

vii

viii CONTENTS
2 Variables 25
2.1 Defining a variable oo 25
2.2 The Definitions pane 27
2.3 What’s in a name? 27
24 Moresyntaxrules. oL 28
2.5 Variables and the Stepper 29
2.6 Review e 29
2.7 Reference e 29
3 Building more interesting pictures 31
3.1 Other kinds of arguments oL 31
3.1.1 Strings as arguments oL o 31
3.1.2 Numbers as arguments Lo 33

3.2 More mistakes 34
3.3 Creating simple shapes oL 34
3.4 Data types and contracts 36
3.4.1 String literals and identifiers 36
3.4.2 Function contracts oL 38
3.4.3 Comments. e 39
3.4.4 Comments in Practice 40

3.5 More functions on pictures Lo 41
3.5.1 Cutting up pictures 41
3.5.2 Measuring pictures Lo Lo 42
3.5.3 Placing images precisely oL 43
3.5.4 Text . . oL e 44
3.5.5 For further reading... oo 45
3.5.6 Playing with colors 45

3.6 Specifying results and checking your work 46
3.7 Reading and writing images L Lo oL 47
3.8 Expanding the syntax rules oL 48
3.9 Review 48
3.10 Reference L 49
4 Writing functions 51
4.1 Defining your own functions oL oL 51
4.2 What’s in a definition?o 53
4.2.1 Terminology 53
4.2.2 Lines and white spaceo 53

4.3 Parameters and arguments oL Lo e 55
4.4 Parameters, arguments, and the Stepper oL 56
4.5 Testing a Function Definition 58
4.5.1 Testing with string descriptions 58
4.5.2 Common beginner mistakes 0. 60
4.5.3 The check-expect function 61

46 Anewsyntaxrule L 62
4.7 Scope and visibilityo o 64
4.8 An analogy from English 0L 65
4.8.1 Proper nouns and literals 65
4.8.2 Pronouns and variables o000 65

4.8.3 Improper nouns and data types 66

CONTENTS

7

4.8.4 Verbs and functions oo oo
4.8.5 Noun phrases and expressions
4.9 Reviewo
4.10 Reference L
A recipe for defining functions
5.1 Step-by-step recipes
5.2 A more detailed recipe L
5.3 Function contracts and purpose statements
5.4 Examples (also known as Test Cases)
5.5 The function skeleton L
5.6 Common beginner mistakes L oL
5.7 Checking syntax L
5.8 Exercises on writing skeletons oL oL oL
5.9 Theinventory L
5.10 Inventories with values oo
5.11 The function body Lo
5.12 Testing e
5.13 Using the function o o
5.14 Putting it all together o oo o
5.15 Review e e
5.16 Reference e
Animations in DrRacket
6.1 Preliminaries
6.2 Tick handlers
6.3 Common beginner mistakes oL oo
6.4 Writing tick handlers oo
6.5 Writing draw handlers oL oL o
6.6 Other kinds of event handlers
6.7 Designrecipe L
6.8 Amnoteonsyntax
6.9 Recording
6.10 Review L
6.11 Reference
Working with numbers
7.1 Arithmetic syntax L o
7.2 Variables and numberso oo Lo
7.3 Prefixnotation oL
7.4 A recipe for converting from infix to prefix
7.5 Kindsof numbers
7.5.1 Integers L
7.5.2 Fractions
7.5.3 Inexact numbers
7.6 Contracts for built-in arithmetic functions
7.7 Writing numeric functionso oo oo
7.8 Manipulating colors in images L L
7.8.1 Images, pixels, and colors

7.8.2 Building images pixel by pixel o000

ix

66
66
67
68

69
69
69
70
73
75
75
78
79
79
82
83
86
86
87
88
89

91
91
92
93
95
97
99
105
106
107
107
108

7.8.3 Error-proofing
7.8.4 Building images from other images
7.8.5 A sneak preview
7.8.6 A problem with bit-maps
7.9 Randomness.
7.9.1 Testing random functions
7.9.2 Exercises on randomness
710 Review e
7.11 Reference

8 Animations involving numbers

81 Modeland view
8.2 Designrecipe
8.3 Animations using addl
8.4 Animations with other numeric functions
8.5 Randomness in animations
86 Review.
8.7 Reference

9 Working with strings

9.1 Operations
9.2 String variables and functions
9.3 Review.
9.4 Reference

10 Animations with arbitrary models

10.1 Model and view
10.2 Design recipe
10.3 Review e
10.4 Reference

11 Reduce, re-use, recycle

11.1 Planning for modification and extension
11.2 Re-using variables
11.3 Composing functions
11.4 Designing for re-use

11.5 Designing multi-function programs: a case study

11.6 Practicalities of multi-function programs
11.7 Re-using definitions from other files.
11.7.1 require and provide
11.7.2 provide-ing everything
11.8 Review o o
11.9 Reference L.

PART II Definition by Choices

12 Defining types

CONTENTS

183

CONTENTS

13 Booleans
13.1 A new data type
13.2 Comparing strings L e
13.3 Comparing numberso oL oL
13.4 Designing functions involving booleans
13.5 Comparing images e
13.6 Testing types o L e
13.7 Boolean operators L
13.8 Short-circuit evaluation L
13.9 Review o L e
13.10Reference L

14 Animations with Booleans
14.1 Stopping animations Lo o
14.2 Stopping in response to eventso
14.3 Review o o L o e
14.4 Reference L e

15 Conditionals
15.1 Making decisions o
15.2 Else and error-handlingo oo
15.3 Design recipeo
15.4 Case study: bank interest L.
15.5 Ordering cases in a conditional
15.6 Unnecessary conditionals oL
15.7 Nested conditionals oo
15.8 Decisions among data types Lo oo
15.9 Review 0 e e
15.10Referenceo

16 New types and templates
16.1 Definition by choiceso oo
16.2 Inventories and templates Lo
16.3 Outventories and templates L.
16.4 Else and definition by choices oL,
16.5 A bigger, better design recipeo
16.6 Review« . o e
16.7 Reference

17 Animations that make decisions
17.1 String decisions
17.2 Numeric decisions
173 Review e
17.4 Reference

18 Of Mice and Keys
18.1 Mouse handlers L L
18.2 Key handlers e
18.3 Key release L
184 Review o L o e

xi

185
185
185
187
190
191
191
192
196
196
197

199
199
202
203
205

207
207
210
211
214
217
219
221
225
228
229

231
231
231
235
236
236
236
238

239
239
245
246
246

xii CONTENTS
18.5 Reference 254

19 Handling errors 255
19.1 Error messageso e e 255
19.2 Testing for errorso 256
19.3 Writing user-proof functions L. 257
19.4 Review o e 257
19.5 Reference L 258
PART III Definition by Parts 259
20 Using Structures 261
20.1 The posn data type 261
20.2 Definition by parts 263
20.3 Designrecipe 263
20.4 Writing functions on posns 264
20.5 Functions that return posns Lo 268
20.6 Writing animations involving posns 270
20.7 Colors 275
20.7.1 The color data type 275

20.7.2 Building images pixel by pixel o000 276

20.7.3 Building images pixel by pixel from other images 276

20.8 Review L 277
20.9 Reference 277
21 Inventing new structures 279
21.1 Why and how 279
21.2 Design recipeo e e 282
21.3 Exercises on Defining Structs 284
21.4 Writing functions on user-defined structs 285
21.5 Functions returning user-defined structs 287
21.6 Animations using user-defined structs 289
21.7 Structs containing other structs o oL 295
21.8 Decisions on types, revisitedo Lo 297
21.9 Review o o o e 302
21.10Reference 303
PART IV Definition by Self-reference 305
22 Lists 307
22.1 Limitations of structs 307
22.2 What is a list? 307
22.3 Defining lists in Racket o oo 308
22.3.1 Data definitions. Lo o 309

22.3.2 Examples of the los data type 311

22.3.3 Writing a functiononlos L. 314

22.3.4 Collapsing two functions intoone 316

22.4 The way wereally dolists 317

CONTENTS

22.4.1 Data definitionso
22.4.2 Examples of the los data type
22.4.3 Writing a functiononlos oL
22.4.4 Collapsing two functions intoone
22.5 Lots of functions to write on lists
22.6 Listsof structs L
22.7 Strings as lists
22.8 Arbitrarily nested lists oL oo

22.9 Review . .

22.10Reference

23 Functions that return lists

23.1 Doing something to each element
23.2 Making decisions on each element L.
23.3 A shorter notation for lists. L

23.3.1 The list function oL

23.3.2 List abbreviations for display
23.4 Animations with lists L
23.5 Strings as lists
23.6 More complex functions involving lists,

23.7 Review . .

23.8 Reference

24 Whole numbers

24.1 What is a whole number? oL oL
24.1.1 Defining wholes from structs
24.1.2 Wholes, the way we really doit

24.2 Different base cases, different directions

24.3 Peano arithmetic

24.4 The wholes in binary
24.4.1 Defining binary wholes from structs
24.4.2 Binary whole numbers, the way we really doit

24.5 Review o L e

24.6 Reference

25 Multiple recursive data
25.1 Separable parameters. o
25.2 Synchronized parameters. oL o
25.3 Interacting parameters Lo s

25.4 Exercises

25.5 Review . .

25.6 Reference

PART V Miscellaneous topics

26 Efficiency of programs
26.1 Timing function calls

26.2 Review . .

26.3 Reference

xiii

317
319
321
323
325
332
337
339
340
341

343
343
345
347
347
347
349
349
351
352
353

355
355
355
358
362
364
367
367
370
373
373

375
375
376
378
382
386
387

xiv CONTENTS
27 Local definitions 395
27.1 Using locals for efficiency 395
27.2 Using locals for clarity L o 398
27.3 Using locals for information-hiding 399
27.4 Using locals to insert parameters into functions 402
27.5 Review e 405
27.6 Reference e 405
28 Functions as objects 407
28.1 Adding parameters 407
28.2 Functions as parameterso e 408
28.3 Functions returning listso oo oo 413
28.4 Choosing a winner e 415
28.5 Accumulating over a list L 416
28.6 Anonymous functions L 0oL 417
28.7 Functions in variables oo oo 418
28.8 Functions returning functions Lo 419
28.9 Sequences and seriesol 422
28.10RevIew L e 425
28.11Reference 425

29 Input, output, and sequence 427
29.1 The symbol data type 428
29.2 Console output 429
29.3 Sequential programmingo 432
29.4 Console input 436
29.4.1 The read functiono 436

29.4.2 Testing with input 0oL 436

29.4.3 EXerciseso 438

29.5 Input streams L oL e 438
29.6 Files e 442
29.7 The World Wide Web oo 443
20.8 Review e e 443
29.9 Reference e 444
30 Mutation 445
30.1 Remembering changes Lo L. 445
30.2 Mutating variable values L 446
30.3 Memoization Lo 449
30.4 Static and dynamic scope L. 452
30.5 Encapsulating state. L L Lo Lo 453
30.6 Mutating structures L 456
30.7 Review o L 459
30.8 Reference L 459

31 Next Steps 461

Chapter 0

Introduction

0.1 Languages and dialects

Computers don’t naturally understand human languages such as English. Instead, we
invent artificial languages to communicate with them. These artificial languages are
typically much simpler than any human language, so it’s easier to learn them than for,
say, an English speaker to learn Chinese. But it’s still hard work. As with any language,
you’ll need to learn the spelling, punctuation, grammar, vocabulary, and idioms' of the
new language.

Among the artificial languages people use to communicate with computers (and com-
puters use to communicate with one another) are HTML, XML, SQL, Javascript, Java,
C++, Python, Scheme, PHP, Ruby, sh, awk, Racket, and hundreds more. Some of these
languages are called programming languages because they are used mostly to write pro-
grams — that is, to teach a computer new tricks by combining the tricks it already
knows.

This is a book about how to write computer programs. Pretty much every such book
chooses one particular programming language. I've chosen to use a new language called
Racket (which is based on a 30-year-old language named Scheme, which is based on a
50-year-old language named Lisp, which is based on an 80-year-old mathematical theory
named lambda-calculus. ..). But it’s not a Racket book; the Racket language is not the
goal, but only a means towards the goal of knowing how to program.

Here’s why: throughout the history of computers, the dominant languages have
changed every five to ten years. (Fortran, Cobol, BASIC, PL/I, Pascal, C++, Java,
Python, ...) No matter which of these languages you learn, it will probably become
obsolete in a few years. If you plan to get a job as a computer programmer next month,
then by all means study the language(s) used in industry right now. But if you plan to
get a job programming several years from now, you’ll have to learn a new language then
anyway. The current school term will be better spent learning more long-lasting skills,
habits, and principles: how to structure a program, what steps to take in developing a
program, how to manage your time so you finish the program on time, etc. And if you

L«Idiom” means the way a particular language is typically used by those who use it heavily. For
example, if I said “This book is more good than any other programming book,” you would know what
I meant, but you would also know I wasn’t a native English-speaker; a native English speaker would
say “This book is better than any other programming book.” Every language, including computer
programming languages, has its own idioms.

2 CHAPTER 0. INTRODUCTION

don’t plan to be a professional programmer at all, then you don’t need to learn this year’s
“hot” language at all; you need to learn the important principles of programming, in
whatever language will “get out of the way” and let you learn them.

In fact, we won’t even be using very much of the Racket language. The software
we use, a program named DrRacket, provides several dialects of Racket, intended for
different kinds of users. (By way of analogy, the United States and England use different
dialects of English: most of the words are the same, but sometimes the same words mean
completely different things in different countries. Furthermore, an elementary school
student, an economist, and a sculptor may all use English, but they use it differently, and
they may use the same word to mean different things.) The “Beginning Student” dialect,
in which we’ll start, doesn’t allow you to do some things that are technically legal Racket,
but which tend to confuse beginning programmers. If you really need to do these things,
you can switch to a larger dialect with a few mouse-clicks.

In this book, there will be no “black magic”: nothing that you need to memorize
on faith that you'll eventually understand it. On the first day, you will see just enough
language to do what you need on the first day. By the end of the term, you will see just
enough language to do what you need in one term. Any language feature that doesn’t
help to teach an important programming principle doesn’t belong in this book. Most
programming languages, frankly, don’t allow me to do that: in C++ or Java, for example,
the very first program you write requires knowing dozens of language features that won’t
be fully explained for months. Racket allows me to postpone irrelevant language features,
and concentrate on the important stuff.

Racket is also a much simpler, more consistent language than C++, Java, or Python,
so it takes much less time to learn. This, too, allows you to concentrate on the important
stuff, which is how to write a program.

Again, Racket is only a means to an end. If six months after taking this course
you don’t remember any Racket at all but can follow the steps of solving a problem, as
explained in this book, the course has been a success.

0.2 Problems, programs, and program testing

A computer program that answered only one specific question, like
add 3 and 4

wouldn’t be very useful. Most computer programs are written to be general, in that a
single program can answer any one of many similar questions:

e add 3 and 4
e add 19 and -5
e add 102379 and -897250987

etc. Somebody writes the program to add two numbers once and for all; later on, when
you run the program, you provide specific values like 3 and 4, and the program produces
the right answer for those values. Run it again with different values, and it should produce
the right answer for the new values instead.

To take a more realistic example, a word processor program is written to handle
whatever words you choose to write. When you run the program, you provide specific
words — a grocery list, a letter to your grandmother, the next best-selling novel — and

0.3. USING DRRACKET 3

the program responds by doing things like formatting them to fit on a page. Likewise,
when you run a Web browser, you provide a specific URL for a page you want to look at;
the browser program uses the network to retrieve specific words and pictures from that
Web page, and then arranges these words and pictures on the screen. If you've done a lot
of Web surfing, you've probably found an occasional page that showed up on the screen
as nonsense; this probably means the page had some weird information that the browser
wasn’t written to handle correctly.

For a computer program to be considered “correct”, it has to produce the right answer
for all possible values it might be given to work on — even the weird ones. One of the
important steps in writing a computer program is testing it to make sure it works correctly.
However, since there are usually far too many possible values to test them all, we have
to choose test cases, being careful to pick not only the easy cases but also the weird ones,
so that if there’s something our program doesn’t handle correctly, we find out as soon as
possible so we can fix it.

A program that hasn’t been tested convincingly is worthless: nobody will (or should!)
trust the answers it produces. Indeed, if you tell me you've tested the program, but don’t
provide me with what I need in order to test it myself, I may not trust either you or the
program.

So one of the themes of this book will be “how to tell whether your program is correct.”
We'll discuss how and when to choose good test cases, as well as how to interpret patterns
of correct and incorrect test cases to track down the source of the error.

0.3 Using DrRacket

This section doesn’t cover any “big ideas”, only the details of how to get DrRacket to
work the way you need it to in this book. If you've already got DrRacket and the
picturing-programs library installed, you can skip this section.

0.3.1 Getting DrRacket

If you haven’t got the DrRacket program installed on your computer already (it usu-
ally has a red-white-and-blue icon, a circle with the Greek letter A on it), you’ll need
to get it. You can download it for free, for Windows, Macintosh, and Linux, from
http://www.racket-lang.org. This textbook assumes you have a version of DrRacket
numbered 5.0.1 or higher.

0.3.2 Starting DrRacket

Once you've got DrRacket downloaded and installed, you should be able to run it by
double-clicking the icon. It should open a window with a few buttons across the top, and
two large panes. In the lower pane (the “Interactions Pane”, where we’ll be working at
first) should be a welcome message like

Welcome to DrRacket, version 5.1.
Language: Beginning Student.
>

(Your version number and language may be different.)
The “> 7 prompt is where you’ll type things.

4 CHAPTER 0. INTRODUCTION

0.3.3 Choosing languages

DrRacket provides a number of different computer languages, most of which are dialects
of Racket. For now, we want to be working in the “Beginning Student” language. If the
welcome message says something other than “Beginning Student” (or perhaps “Beginning
Student custom”) after the word “Language:”, do the following;:

1. Pull down the “Language” menu and select “Choose Language...”
2. Find the group of languages named “How to Design Programs”

3. If necessary, click the triangle to the left of “How to Design Programs” to show its
sub-headings

4. Select “Beginning Student”
5. Click “OK”

6. Quit DrRacket and start it again, and it should now say “Language: Beginning
Student”.

(You don’t really have to quit and re-start DrRacket; you can get the same effect by
clicking the “Run” button. However, quitting and restarting demonstrates that DrRacket
remembers your choice of language from one time you use it to the next.)

0.3.4 Installing libraries

A “library”, or “teachpack”, is a collection of optional tools that can be added into
DrRacket. For most of this book, we’ll need one named picturing-programs.

Skip this section if you have DrRacket version 5.1 or later: picturing-programs
is already installed on your computer.

If you don’t already have the picturing-programs library, here’s how to get it. You’ll
only have to do this once on any given computer.

1. Make sure your computer is connected to the Internet.
2. Start DrRacket.

3. From the “Language” menu, “Choose Language”, then select “Use the language
declared in the source”.

4. Click “Run”.

5. At the “> 7 prompt in the bottom half of the screen, type
(require (planet sbloch/picturing-programs:2))

exactly like that, with the parentheses and the slash and all. It may take a few

seconds to a few minutes (most of which is updating the help system to include
information on this library), but eventually you should see the message “Wrote file
“picturing-programs.ss” to installed-teachpacks directory.”

6. From the “Language” menu, “Choose Language”, then click on to “How to Design
Programs”; then select “Beginning Student”. Hit “Run” again.

0.4. TEXTBOOK WEB SITE 5

0.3.5 Getting help

If you want to look up reference information about this library (or anything else in the
language),

1. from the “Help” menu, choose “Help Desk”.

2. find the search box at the top of the screen and type the name of a library or
function you want to learn about. Then hit ENTER.

3. If the name is found, you’ll get a list of places it appeared in the documentation.
Click one of them (probably one that says it’s from the “picturing-programs” li-
brary).

4. Documentation for that library or function should appear on the screen.

0.4 Textbook web site

In order to keep the cost of this book down, we’ve put all the illustrations in black and
white. You can find colored versions of many of them, as well as corrections, updates,
additions, image files, and downloadable versions of worked exercises (so you don’t have
to type them in by hand), etc. at http://www.picturingprograms.com.

Index

<, 197

<=, 197

>, 197

>=, 197

* 134

+, 134

-, 134

/, 134

=, 197

Lukasiewicz, Jan, 112

above, 11, 12, 24
above/align, 32, 49

abs, 122, 129, 134
accumulative recursion, 461
ActionListener, 107
add-curve, 45, 50

add-line, 50

addl, 110, 134

add1?, 359

aliasing, 457
all-defined-out, 178, 179
all-from-out, 179
ambiguity, 113

ambiguous expressions, 112, 114
and, 194, 197

append, 345, 353
arguments, 11, 23, 55
auxiliary function, 166, 179
awk, 1

base case, 325

BASIC, 1

begin, 432, 444

Beginning Student language, 2, 4

Beginning Student with List Abbreviations,

347
beside, 12, 24
beside/align, 31, 49

big-bang, 91, 100, 105, 108, 138, 140, 154,

155, 204

binary trees, 461

bit-maps, 131

bitmap, 49, 442

black magic, 2

blank lines, 53

boolean, 185

Boolean operators, 192
boolean="7, 192, 197
boolean?, 191, 197
borderline, 187-190, 211, 214
box diagrams, 20, 28, 48, 63
build-image, 131, 135, 276, 278
build-image/extra, 277, 278
build-list, 415, 426
build3-image, 125, 135
bullseye, 72, 74, 79, 82, 86

C++, 1,2

callback, 107

callbacks, 96

caption-below, 87

char, 338

char-alphabetic?, 339, 341
char-downcase, 350, 353
char-lower-case?, 350, 353
char-upcase, 350, 353
char-upper-case?, 350, 353
char="7, 338, 341

char?, 338, 341

characters, 338

Check Syntax, 78

check-error, 256, 258
check-expect, 61, 68
check-member-of, 132, 135
check-range, 132, 135
check-with, 137, 138, 154, 204
checkerboard2, 72, 74, 79, 80, 84
circle, 35, 49

circle-in-square, 87

classes, 462

client-server programming, 461

463

464

Cobol, 1

color, 275
color-blue, 275, 278
color-green, 275, 278
color-red, 275, 278
color="7, 278

color?, 275, 278
comments, 39, 49
components, 125
compose, 421

cond, 208, 229
conjugation, 42
cons, 318, 341
cons?, 318, 341
constructor, 279
constructors, 302
continuations, 461
contract, 88
contracts, 38, 48, 70, 462
Conway, John, 404
copies-beside, 71, 74, 79, 80, 84
Copying images, 9

counterchange, 55, 71, 73, 75, 80, 82, 83

CPU time, 391
crop, 42, 45, 50
crop-bottom, 41, 49
crop-left, 42, 49
crop-right, 42, 49
crop-top, 42, 49

data types, 36, 48, 66
define, 29, 68
define-struct, 280, 303
define-struct/contract, 462
define/contract, 462
Definitions Pane, 9, 18, 27
dialects, 2

diamond, 87
discriminator, 279
discriminators, 192, 229, 302
display, 429, 444

dot-grid, 72, 75, 79, 82, 84

draw handlers, 91, 97, 100, 138-140, 154,

155, 204
DrRacket, 2, 3
dynamic programming, 452
dynamic scope, 453

ellipse, 35, 49
else, 210, 229

empty, 318, 341
empty-scene, 45, 50
empty?, 318, 341
equal?, 229, 329
error, 256, 258

error messages, 13, 86
event handler, 107
event handlers, 91, 92
event-driven programming, 96
examples, 72, 88
executables, 462
expressions, 11, 66

field, 279

fields, 302

filter, 426

finite-state automaton, 332
finite-state machine, 332
first, 318, 341
flip-horizontal, 10, 24
flip-vertical, 10, 24

foldl, 417, 426

foldr, 417, 426

format, 257, 258

Fortran, 1

four-square, 54

frame, 45, 50

function body, 53, 79, 83, 88
function contract, 88
function definitions, 51, 62
function header, 53, 79
function inventories, 79
function skeleton, 88
function skeletons, 75
function template, 232, 235, 238
functions, 11, 23, 66

Game of Life, 404

garbage collection, 391, 392
GC time, 391

generative recursion, 461
get-pixel-color, 277, 278, 403
getter, 279

getters, 302

graphics, 462

GUI, 462

Help Desk, 5

helper function, 124, 133, 166, 179

INDEX

higher-order functions, 404, 405, 408

INDEX

hope, 13
HTML, 1

identifiers, 15, 27-29

identity, 414, 426

idioms, 1

if, 218, 229

image-height, 42, 49

image-width, 42, 49

image="7, 197

image?, 137, 191, 197

Importing images, 9

improper nouns, 66

indentation, 14, 54

infix operators, 112

information-hiding, 399, 401, 405

Inserting images, 9

instance, 279

instance variable, 279

instance variables, 302

instances, 302

Interactions Pane, 3, 9, 27

inventories, 79, 88

inventories with values, 82, 88, 118, 120,
122, 158, 173, 268-270, 272, 277,
288, 290, 291, 293, 294, 303, 315,
322, 327, 334, 357, 365, 369

inventory, 235

isosceles-triangle, 50

jaggies, 131
Java, 1, 2, 461
Javascript, 1

key handler, 250

key handlers, 100, 105, 138, 140, 154, 155,
204

key=7, 254

KeyListener, 107

lambda, 425
lambda-calculus, 1
lexical scope, 453
libraries, 4, 10

life, 404

line, 50

Lisp, 1

List Abbreviations, 347
list function, 347
list->string, 353

465

list-ref, 332, 341, 378

literals, 11, 23, 26, 28, 36, 48, 65
local, 405

lollipop, 72, 75, 79, 82, 86

macros, 462

make-color, 45, 49, 275, 278

make-posn, 261, 277

map, 426

map-image, 131, 276, 278

map-image/extra, 277, 278

map3-image, 135

max, 122, 134

memoization, 450

method dispatch, 455

min, 122, 127, 134

mirror-image, 52

misspellings, 15

model, 91, 97, 105, 107

model checking, 138, 154

model type checkers, 204

model-view framework, 139, 153, 156

models, 140

modules, 462

mouse handlers, 100, 101, 105, 138, 140,
154, 155, 204

MouseListener, 107

n-ary trees, 461
name->color, 46
name- color, 49
natural?, 355

network programming, 461
newline, 444

not, 194, 197

noun phrases, 66
number->string, 152
number?, 137, 191, 197
numbers, 33, 48

object-oriented programming, 461, 462

on-draw, 92, 100, 108, 138, 154, 204

on-key, 100, 105, 106, 108, 138, 140, 154,
155, 204

on-mouse, 100, 105, 106, 108, 138, 140, 154,
155, 204

on-release, 253, 254

on-tick, 92, 100, 105, 106, 108, 138, 140,
154, 155, 204

operations, 11, 23

466

or, 194, 197

order of operations, 112, 113
outventories, 80

outventory, 235

overlay, 12, 24, 92
overlay/align, 33, 49
overlay/xy, 50

paint method, 107
parameter names, 77, 79
parameterizing, 407
parameters, 55, 63
parenthesis matching, 13
PEMDAS, 112, 113
PHP, 1

pi, 135

pinwheel, 71, 74, 79, 80, 84
pixel-maps, 131

pixels, 125

PL/I, 1

place-image, 43, 49, 92
place-image/align, 49
Polish notation, 112
polymorphic functions, 229
positive?, 359, 373
posn-x, 261, 277

posn-y, 261, 278

posn?, 261, 278

prayer, 13

precedence, 112
predicates, 192, 196
prefix notation, 112
prefix operators, 112
prefix-out, 179

printf, 430, 444
procedures, 11
programming languages, 1
pronouns, 65

proper nouns, 65
provide, 177, 179
purpose statement, 88
purpose statements, 70
Python, 1, 2

quadratic formula, 111
quote, 436
quotient, 134

Racket, 1, 2
radial-star, 50

random, 134

read, 436, 444
read-line, 436, 438, 444
Real time, 391
real->int, 127
record?, 107, 108
rectangle, 34, 49, 92
recursion, 324
recursive, 324
regular-polygon, 50
remainder, 134
rename-out, 179
require, 4, 10, 24, 177, 179
reserved word, 229
rest, 318, 341
reverse, 345, 353
RGB, 125

RGBA, 125
rhombus, 50
right-triangle, 50
rotate, 33, 49
rotate-180, 11, 24
rotate-ccw, 11, 24
rotate-cw, 11, 24
Ruby, 1

save-image, 47, 49, 442
scale, 33, 49

scale/xy, 33, 45, 50
scene+-curve, 45, 50
scene-+line, 45, 50
Scheme, 1

scope, 63, 65

selector, 279

selectors, 302

set, 459

setter functions, 459
setters, 456

sh, 1

short-circuit evaluation, 196

show-it, 91, 92, 97, 100, 108, 138, 154, 155,

204
sin, 134
skeleton, 88
skeletons, 75
special form, 196, 209, 258
special forms, 93
SQL, 1
sqrt, 134
square, 45, 50

INDEX

star, 49 type predicates, 192, 197, 226, 229
star-polygon, 50

static scope, 453 underlay, 45, 50

Stepper, 19, 29, 56 underlay /align, 45, 50

stop handlers, 204 underlay /xy, 45, 50

stop-when, 204, 205 universe, 91, 461

stop-with, 205
string<?, 197
string<=7, 197

value of an expression, 9, 11
variable definitions, 25, 28
string>?, 197 variables, 25, 26, 29, 36, 65

string>=?, 197 verbs, 66
string->list, 338, 341 vgr't-.n}lrror-lmage, b4
string->number, 152 v1s.1b1hty, 63
string-append, 151 void, 458
string-ci<?, 197

string-ci<=7, 197

string-ci>?, 197

string-ci>="7, 197

string-ci="?, 197

string-length, 151

string="?, 197

string?, 191, 197

strings, 32, 36, 48

struct-out, 179

structural recursion, 461

Structure and Interpretation of Computer

web server, 461

white space, 53

whole numbers, 355
with-input-from-file, 444
with-input-from-string, 436, 444
with-input-from-url, 444
with-io-strings, 438, 444
with-output-to-file, 444
with-output-to-string, 431, 444
world, 91

write, 429, 444

Programs, 419 XML, 1
sub-expressions, 17
sub-range, 190, 211, 214 zero?, 359, 373
subl, 110, 134, 373
subl?, 359

substring, 152
surround, 55
Syntax rules, 28
syntax rules, 20

teachpacks, 4

template, 238

test cases, 3, 72, 88
test-driven development, 73
testing, 58, 86, 88

text, 44, 49

text-box, 87

text/font, 45, 50

thunks, 432

tick handlers, 92, 99, 100, 105, 138, 140,
154, 155, 204

time, 393

triangle, 35, 49
two-eyes, 87

467

468 INDEX

Bibliography

[ASS96]

[FFF+08a]

[FFF+08b)

[FFFKO1]

[Mil56]

[Par72]

Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and
Interpretation of Computer Programs. McGraw-Hill, 1996.

Matthias Felleisen, Robert Bruce Findler, Kathi Fisler, Matthew Flatt, and
Shriram Krishnamurthi. How to Design Worlds: Imaginative Programming
in DrScheme. self-published on Web, http://world.cs.brown.edu, 2008.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Kathryn Gray,
Shriram Krishnamurthi, and Viera K. Proulx. How to design class hierarchies.
In preparation, 2008.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Kr-
ishnamurthi. How to Design Programs: an Introduction to Programming and
Computing. MIT Press, 2001. See http://www.htdp.org.

George A. Miller. The magical number seven, plus or minus two: Some limits
on our capacity for processing information. The Psychological Review, 63:81—
97, 1956.

D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the Association for Computing Machinery, 15(12):1053—
1058, Dec 1972.

469

